

SMAP Marena Oklahoma In Situ Sensor Testbed

- Lead Scientist: Michael Cosh (USDA-ARS-Beltsville)
- Local Lead: Tyson Ochsner (Oklahoma State Univ.), Geano Dong
- Field Managers: Chris Stansberry (OSU) and Lynn McKee (ARS)
- Sensor Leads
 - Base Stations: Michael Cosh
 - COSMOS: Marek Zreda (U.Ariz) 0
 - GPS Reflectometers: Eric Small (Colorado)
 - CRN: Michael Palecki and John Kochendorfer (NOAA)
 - Passive DTS: Susan Steele-Dunne (Delft Univ.), John Selker (Oregon State), Christine Hatch (Umass Amherst), Chadi Sayde (Oregon State), Nick van de Geisen (Delft Univ.)
 - TDR: Steve Evett (USDA-ARS-Bushland) and Tyson Ochsner (OSU) 0
 - Flux: Jeff Basara (Univ. of Oklahoma) and John Prueger (USDA-ARS-Ames)

Many in situ networks in the world, with a variety of sensors/methods

SMAP Marena Oklahoma In Situ Sensor Testbed Site Selection

- Managed by OSU Range Research Station
- Local support from OSU Dept. Plant and Soil Science
- Rangeland/Pasture
- Co-located with Oklahoma Mesonet MARE site
- Two NOAA CRN stations nearby (1 additional installed on site)
- Long Term Access ~ 6 years
- >700 m Domain for COSMOS

SMAP Marena Oklahoma In Situ Sensor Testbed Site Design Site Design

SMAP Marena Oklahoma In Situ Sensor Testbed Marena Site Design

- Four Base Installations
- Common depths of 5, 10, 20, 50, 100 cm, with some sampling at 2.5 cm with Hydra.
- Base station sensors
 - Stevens Water Hydra Probes (6)
 - Delta-T Theta Probes (5)
 - Decagon EC-TM probes (5)
 - Sentek EnviroSMART Capacitance Probes (4)
 - Campbell CS615/CS616 TDRs (5)
 - CS 229-L heat dissipation sensors
 (OK Mesonet) (5)
 - Acclima Sensor (5)

Site A	Site B	Site C	Site D
Base	Base	Base	Base
GPS	ASSH	GPS	GPS
COSMOS	Passive DTS		CRN
ASSH			
TDR systems			
Flux System			

SMAP Marena Oklahoma In Situ Sensor Testbed Installation Installation

Installation in May 2010

Sensor Methods Sensor Methods **Sensor Methods**

SMAP Marena Oklahoma In Situ Sensor Testbed Validation Sampling Campaigns

Monthly Sampling

- Vegetation Collection
- Gravimetric Sampling
- Theta Probe Sampling
- Intensive Observations
 - High Density Sampling
 - Soil Profiles

SMAP Marena Oklahoma In Situ Sensor Testbed Timeline

- Project Planning begins October 2009
- Installation and deployments
 - Base Stations installed May 2010
 - GPS installed in June 2010
 - COSMOS installed July 2010
 - Passive DTS installed October 2011
 - SMAPVEX11, June 2011, PALS flights/COSMOS rover.
 - Flux Tower installed October 2011
 - Burn Study Winter 2012
 - Additional UAVSAR flights October 2012
 - AirMoss Validation October 2012

SMAP Marena Oklahoma In Situ Sensor Testbed Calibration and Scaling

Soil Calibration

Every sensor can be calibrated to each specific soil to be installed in.

- Soil specific Calibration, in field or in lab with replication of soil bulk density
- Variety of soil moisture conditions necessary for accurate calibration.

Installation Scaling

Each installation should be scaled to determine how it represents the domain in which it is installed.

- Each installation or set of installations is one data series to be calibrated
- Scaling is against the satellite metric, 0-5 cm gravimetrically based volumetric soil moisture.

Songer California Sensor Calibration

SMAP Marena Oklahoma In Situ Sensor Testbed Calibration Accuracy **Calibration Accuracy**

Sensor	RMSE Factory Calibration	RMSE Site Calibration	Failure Rate
Theta	0.0300	0.0276	0% (0/20)
Hydra	0.0401	0.0299	0% (0/24)
ECTM(Echo)	0.0811	0.0361	35% (7/20)
CS616	0.0726	0.0626	5% (1/20)
Acclima	0.0796	0.0253	55% (11/20)
Trime	0.0422	0.0233	12.5% (1/6)
CS229	-	-	15% (3/20)
EnviroSMART/S entek	-	-	0% (0/16)

RMSE in m³/m³

SMAP Marena Oklahoma In Situ Sensor Testbed CRN 5 cm

SMAP Marena Oklahoma In Situ Sensor Testbed CRN Hydras at 100 cm depth

SMAP Marena Oklahoma In Situ Sensor Testbed Sites A-D Hydras at 5 cm depth

SMAP Marena Oklahoma In Situ Sensor Testbed CDFs of Site Averages by Sensor at 5 cm

SMAP Marena Oklahoma In Situ Sensor Testbed CDFs of Site Averages by Sensor at 50 cm

Scaling to the Field A Scaling to the Field Average

Sensor	2.5 cm	5 cm	10 cm
CS616		0.036	0.046
Hydra	0.21	0.035	-
Theta		0.030	0.039
Acclima		0.038	0.047
Sentek			0.064
Echo		0.032	0.043
Trime	0.0255	0.033	0.042
CS229		0.038	0.044
COSMOS	0.039		

SMAP Marena Oklahoma In Situ Sensor Testbed Uniform conditions in the testbed

SMAP Marena Oklahoma In Situ Sensor Testbed Some Conclusions

- Installation practices and procedures should be standardized
- Calibration is critical for all sensors.
- Scaling (representativeness) also critical for all sensors.
- Raingage records are important for erroneous readings and troubleshooting.
- Accuracies of < 0.04 m³/m³ are achievable with a variety of sensors to field scales.
- Mixing of sensors within or between domains will cause variation at the fringes of the moisture conditions.

Oops

• We're out of time.

SMAP Marena Oklahoma In Situ Sensor Testbed Variability at the Surface 0-5 cm

